
Ray Casting

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, 
Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Traditional Pinhole Camera
• The film sits behind the pinhole of the camera.

Film Plane Pinhole

Traditional Pinhole Camera
• The film sits behind the pinhole of the camera.

• Rays come in from the outside, pass through the
pinhole, and hit the film plane.

Film Plane Pinhole

Traditional Pinhole Camera
• The film sits behind the pinhole of the camera.

• Rays come in from the outside, pass through the
pinhole, and hit the film plane.

Film Plane Pinhole

Photograph is upside down

Virtual Camera
• The film sits in front of the pinhole of the camera.

Film PlanePinhole

Virtual Camera
• The film sits in front of the pinhole of the camera.

• Rays come in from the outside, pass through the film
plane, and hit the pinhole.

Film PlanePinhole

Virtual Camera
• The film sits in front of the pinhole of the camera.

• Rays come in from the outside, pass through the film
plane, and hit the pinhole.

Film PlanePinhole

Photograph is right side up

Overview
• Ray Casting
oWhat do we see?
oHow does it look?

Ray Casting
• Rendering model

• Intersections with geometric primitives
oSphere
oTriangle

• Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»Octrees
»BSP trees

Ray Casting
• We invert the process of image generation by

sending rays out from the pinhole, and then we find
the first intersection of the ray with the scene.

Film PlanePinhole

Ray Casting
• The color of each pixel on the view plane  

depends on the radiance emanating from  
visible surfaces

View plane
Eye position

Rays
through

view plane

Ray Casting
• For each sample …
oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color sample based on surface radiance

Ray Casting
• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 }
 return image;
} •Where are we looking?

•What are we seeing?
•What does it look like?

Constructing a Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Constructing a Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

The ray has to originate at P0, the
position of the camera. So the
equation for the ray is of the form: 
 Ray=P0+tV

Constructing a Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

If the ray passes through the point P,
then the solution for V is: 
 V=(P-P0)/||P-P0||

Constructing a Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

If P represents the (i,j)-th pixel of the
image, what is the position of P?

Constructing Ray Through a Pixel
• 2D Example: Side view of camera at P0
oWhat is the position of the i-th pixel P[i]?

d
θ towardsP0

up

θ = frustum half-angle (given), or field of view
d = distance to view plane (arbitrary = you pick)

Constructing Ray Through a Pixel
• 2D Example: Side view of camera at P0
oWhat is the position of the i-th pixel P[i]?

P2

P1

2*d*tan(θ)

d
θ towardsP0

up

θ = frustum half-angle (given), or field of view
d = distance to view plane (arbitrary = you pick)

P1 = P0 + d*towards – d*tan(θ)*up
P2 = P0 + d*towards + d*tan(θ)*up

Constructing Ray Through a Pixel
• 2D Example: Side view of camera at P0
oWhat is the position of the i-th pixel?

P1 = P0 + d*towards – d*tan(θ)*up

P2

P1

2*d*tan(θ)

d
θ towardsP0

up

P2 = P0 + d*towards + d*tan(θ)*up

P[i]P[i] = P1 + ((i+0.5)/height)*(P2-P1)
= P1 + ((i+0.5)/height)*2*d*tan(θ)*up

θ = frustum half-angle (given), or field of view
d = distance to view plane (arbitrary = you pick)

Constructing Ray Through a Pixel
• 2D Example:
oThe ray passing through the i-th pixel is defined by:

Ray=P0+tV

• Where:
oP0 is the camera position
oV is the direction to the i-th  

pixel:
oP[i] is the i-th pixel location: 

oP1 and P2 are the endpoints of the view plane:

P2

P1

2*d*tan(θ)

d
θ towardsP0

up

V
P[i]

P[i] = P1 + ((i+0.5)/height)*(P2-P1)

V=(P[i]-P0)/||P[i]-P0||

P1 = P0 + d*towards – d*tan(θ)*up
P2 = P0 + d*towards + d*tan(θ)*up

Ray Casting
• 2D implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < height; i++) {
 Ray ray = ConstructRayThroughPixel(camera, i, height);
 Intersection hit = FindIntersection(ray, scene);
 image[i][height] = GetColor(hit);
 }
 return image;
}

Constructing Ray Through a Pixel
• Figuring out how to do this in 3D is assignment 2

P2

P1

2*d*tan(θ)

d
θ towardsP0

up

V
P[i]

Ray Casting
• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 }
 return image;
}

Ray Casting
• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 }
 return image;
}

Ray-Scene Intersection
• Intersections with geometric primitives
oSphere
oTriangle

• Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform (Voxel) grids
»Octrees
»BSP trees

Ray-Sphere Intersection

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

P0

V

O

P
r

P’

Algebraic Method

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
at2 + bt + c = 0

where:
a = 1
b = 2 V • (P0 - O)
c = |P0 - O |2 - r 2 = 0

P0

V

O

P
r

P’

Algebraic Method

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
at2 + bt + c = 0

where:
a = 1
b = 2 V • (P0 - O)
c = |P0 - O |2 - r 2 = 0

P0

V

O

P
r

P’

Algebraic Method

Generally, there are two solutions to
the quadratic equation, giving rise to
points P and P’. 
You want to return the first hit.

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

P0
V

O

P

r

P’

r

L

Geometric Method

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V (assumes V is unit length)

P0
V

O

P

r

P’

r

tca

L

Geometric Method

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V (assumes V is unit length)

d2 = L • L - tca2

if (d2 > r2) return 0
P0

V
O

P

r

P’

rd

tca

L

Geometric Method

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V (assumes V is unit length)

d2 = L • L - tca2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0
V

O

P

r

P’

rdthc

tca

L

Geometric Method

Ray-Sphere Intersection

P0

V

O
P r

N

• Need normal vector at intersection  
for lighting calculations

Ray-Sphere Intersection

P0

V

O
P r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection  
for lighting calculations

Ray-Scene Intersection
• Intersections with geometric primitives
oSphere
»Triangle

• Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»Octrees
»BSP trees

Ray-Triangle Intersection
• First, intersect ray with plane

• Then, check if point is inside triangle

P

P0

V

Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

Solution:
t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

Ray-Triangle Intersection I
• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 - P0
V2 = T2 – P0
N1 = V2 x V1
if ((P - P0) • N1 < 0)

return FALSE;
end

Ray-Triangle Intersection II
• Check if point is inside triangle parametrically

P

Every point P inside the triangle can be  
expressed as:

P = T1 + α (T2-T1) + β (T3-T1)
where:

0 ≤ α ≤ 1 and 0 ≤ β ≤ 1
α + β ≤ 1

α(T2-T1)
T1

T2

T3

β(T3-T1)

Ray-Triangle Intersection II
• Check if point is inside triangle parametrically

P

P0

Solve for α, β such that:
P = T1 + α (T2-T1) + β (T3-T1)

Check if point inside triangle.
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1
α + β ≤ 1

V T2

T3

α(T2-T1)
T1 β(T3-T1)

Other Ray-Primitive Intersections
• Cone, cylinder, ellipsoid:
oSimilar to sphere

• Box
oIntersect 3 front-facing planes, return closest

• Convex polygon
oSame as triangle (check point-in-polygon algebraically)

• Concave polygon
oSame plane intersection
oMore complex point-in-polygon test

Ray-Scene Intersection
• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)
{
 min_t = ∞
 min_shape = NULL
 For each primitive in scene {
 t = Intersect(ray, primitive);
 if (t > 0 and t < min_t) then
 min_shape = primitive
 min_t = t
 }
 }
 return Intersection(min_t, min_shape)
}

Next Lecture
• Intersections with geometric primitives
oSphere
oTriangle

» Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»Octrees
»BSP trees

